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ITEM #20, CONTINUED: decomposition and representation theorems for seémi-
martingales, formulas for absolutely continuous change of probability
measure (e.g., the Girsanov formula), and the study of Ito-sense stochastic
differential equations with discontinuous coefficients. It seems fair to
.say that these developments in stochastic processes were in turn to an

extent influenced by their applications in stochastic control. For con-
trolled Markov diffusion processes, there is a direct connection with certain
nonlinear partial differential equations via the dynamic programming equa~-
tion., These equations are of second order, elliptic or parabolic, and
possibly degenerate. Stochastic control gives a way to represent their

\\\\ solutions probabilistically. There is an unforeseen connection with differ-

ential geometry via the Monge-Ampere equation.
N XSub t

Broadly spgaking, stochastic control theory deals with models of systems
whose evoJution is affected poth by certain random influences and also by
certain ihputs chosen by a controller** The authors are concerned here
state-space formulations of control problems in continuous time.
Moreovey, the authors consider only markovian control problems in which the

state of the process being controlled is Markov provided the controller
follo Markov control policy.> The authors shall not discuss at all the

extensive engineering literature on input-output formulations particularly
for linear system models, see Astrom [1].

They w subt /

. mainly discuss fhe case of continuously acting control, in
which at each time t a control(&éiis applied to the system.Y However, in #8
the authors briefly mention imp ive control problems, in which control is
applied only at discrete time instants. In optimal stochastic controi
theory the goal is to minimize (or maximize) some criterion depending on the
states x,_ and controls u_ during some finite or infinite time interval. In
#2 the authors formulate a class of optimal control problems for Markov
processes, with criterion (2.2) to be minimized. The distinction between
problems in which x_ is known to the controller, and problems with partial
observations is made there. When x_ is known, the dynamic programming method
can be used. In principle, this method leads directly to an optimal Markov
control policy, although it rarely gives the optimal policy explicitly. 1In
#3, both analytical and probabilistic approaches are indicated. Associated
with dynamic programming is the Nisio nonlinear semigroup (#4). In #5 a
logarithmic transformation is applied to positive solutions of the backward
equation of a Markov process. There results a controlled Markov process,
leading to connections between stochastic control and such topics as
stochastic mechanics, large deviations and nonlinear filtering. The case of
controlled, partially observed processes is mentioned in #7, along with
adaptive control of Markov processes. Finally, in #9, the authors indicate
a few of the various difficulties encountered in seeking to implement in
engineering applications the mathematically sophisticated results of the
theory, and mention some newer areas of application.
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OPTIMAL CONTROL OF ‘MARKOV PnocesSsS

Wendell H. F'leming

L Introduction. The purpose of tMs article is-_to give an .

overview of some recent developments in optimal stochastic control
theory. The field has expanded a great deal during the last 20
years. It is not pessible in this overview to go deeply 1nte any
topic, and a number of interesting topi.cs have been omitted entirely.
The 1ist of References includes several books, coﬁference proceedings
and survey articles. B |

The development of stochastic control theory has depended on
parallel advances in the theory of stochastic processes and on cemin
topics in partial diffefential equations. On the probabilistic side
one can mentiim decomposition and represenutinn theorems for semi-
martingaies. formulas for absolutely continuous change of probability
measure (e.g. the Girsanov formula), and the study of Ito-sense
stochastic differential equations with discontinuous coefficients.
It seems fair to say that these developments in stochastic processes
were 1n turn to an extent mm by their applications in |
stochastic control. For controlled Murkov diffusion processes, mre
1s a direct coumctioa with certain nonliuur parth! diﬂuepthl
5 equations via the dym'lc pmgrming equat‘lon. 'ﬂbse mﬁm an
| ‘Of ucond order. elliptic or parabolic. and possibly w&e, o
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Stochastic control gives a way to represent their solutions probabil- °
istically. There is an unforeseen connection with-differential geom-
etry via the Monge-Ampere equation.

Broadly speaking, stochastic control theory deals with models of
systems whose evolution is affected both by certain random influences
and also by certain inputs chosen by a "controller". We are concerned
here only with state-sp;ce formulations of control problems in contin-
uous time. Moreover, we consider only markovian control problems in
which the state Xy of the process being controlled is Markov provided
the controller follows a Markov control policy, We shall not discuss at
211 the extensive engineering literature on input-output formulations
particularly for linear system models, see Rstrﬁm (1.

We shall mainly discuss the case of continuously acting control,
in which at each time t a control Uy is applied to the system.
However, in §8 we briefly mention impuisive control problems, in which
control is applied only at discrete time instants. In optimal stochas-
tic control theory the goal is to minimize (or maximize) some criterion
depending on the states Xy and controls Uy during some finite or
infinite time interval. In §2 we formuléte a class of optimal control
problems for Markov processes, with criterion (2.2) to be minimized.
The distinction between problems in which X, 1s known to the con-
troller, and problems with partial observations is made there. When
Xy is known, the dynamic programming method can be used. In principle,
this method leads directly to an optimal Markov control policy, although
it rarely gives the optimal policy explicitly. In §3, both analytical
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and probabilistic approaches are indicated. Associated with dynamic
programming is the Nisio nonlinear semigroup (§4). In §5 we discuss
methods of approximate solution and special problems. In §6 a logarith-
mic transformation is appliéd to positive solutions of the backward
equation of a Markov process. There results a controlled Markov process,
leading to conngctions between stochastic control and such topics as
stochastic m;chénics, large deviations and nonlinear filtering. The
case of controlled, partially observed processes is mentioned in §7,
along with adaptive control of Markov processes. Finally in §9 we in-
dicate a few of the various difficulties encountered in seeking to im-

‘plement in engineering applications the mathematically sophisticated

results of the theory, and mention some newer areas of application.

2. Controlled Markov processes. We consider optimal stochastic control

problems of the following kind. We are given metric spaces I, U
called the state space and control space, respectively. For each fixed
u€ U there is a linear operator LY which generates a Markov, Feller
process with state space I. The domain of LY contains, for each
ueU, a set D dense in the space C(IZ) of bounded uniformly contin-
uous functions on I. The state and control processes XysUy ave
defined on some probability spacé (2, #,P). The I-valued process X,
is adapted to some increasing family of o-algebras 5;: P, and the
trajectories x are right continuous. The

U-valued process uy is predictable with respect to an increasing
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family of c-algebras AL S‘t The o-algebra 3; describes in a measure

theoretic way the information available to the controller at time t.

The processes (xt’"t) are related by the requirement that
t ug
(2.1) Ma(t) = 9lx,) - 9lxg) - | L a(x )ds
_ 0

is a (#,P) martingale for every g€D. We consider a fixed, finite
time interval 0 < t < T, and the objective to minimize a criterion of

the form of an expectation

(2.2) J= E{J K(x,ou,)dt + 6(xq)3.

Example 1. Controlled finite-state Markov chain, with
L=1{1,2, ... ,N}). In this case LY is identified with the infinites-

imal matrix (q';j) of the chain. When the control is applied,

u
N : - “tt
the jumping rate of Xy from state i to j is qij'

Example 2. Controlled diffusion process with I = R",
(2.3) Xy = X+ IO f(xs,us)ds + JO olxg,ug)dw, ,

with w, a brownian motion (of some dimension d) independent of the

initial state Xg- In this case
n 2 n
(2.4) L § A, (XUt + T F.(X,u)sm

with a= go' and D={g: g.gxi,gxixje CR"), i,d=1, ... .0}k

The diffusion is called nondegenerate if the eigenvalues of a(x,u)




" are. bounded below by~ ¢ > 0. |
+ . Further assumptions, which vary from author to author tsn the
literature; need to be made. To avoid undue complication, in the dis-
cussion to follow we take a compact control space : U, and »%Q_x.n). G(x)
‘bounded, uniformly continuous. In (2.’3:);-f(x',uu) »0{x,u) are bounded and
as smooth as necessary. The c-algebras .9 are right contimuous

land, completed. | | ' » |

~ If x; is & -measurable, then the controller can observe the
state xi. In this case, one may as well take & = % . and known
initial state x,. This is the situation in §'s 3-6 to follow. If
(2.1) holds, we call

ol = (@,FP{F}.x,5u,)

an admissible system for the contro1 problem with completely observed

states.

A Markov control policy is a Borel measurable function from

{0,TIxX into U. An admissible system ot 1is obtained via a Markov
contro] po'licy u if

(2.5) ' U = y;(t.x;).

B

Given u and Xg€ I, one would 1ike to know whether a corres-
ponding ‘admissible system exists, with "t a Markov pmss Under
sufﬂciently strong restrictions this is well kmn. . For. instance

" case of controlled diffusions a Lipschitz condition on ult,x} woxﬂd '




T ———y %

-6-

ktﬁ imply the classical Ito conditions. For nondegenerate controlled

| diffusions, existence follows from Krylov [8, p.87] for any bounded u.
The Markov property of X, can be obtained under stronger hypotheses.
For instance, for nondegenerate diffusions it holds if in (2.3) o=0{x). :
A martingale method for obtaining the Markov property is to show that

the probability distributioﬁ P%- of the state trajectory x_  is
0 '

unique and depends continuously on the initial state Xq [59). In gen-
eral X4 is only a weak-sense solution to (2.3), since neither the
probability space nor the brownian motion w, are given in advance. - 3

However, in the nondegenerate case with o = g(x) a result of

1"‘.‘

Veretennikov [62] gives a strong solution.

3. Dynamic programming. The dynamic programming approach to the

control problem with completely observed states Xy can be described

in a purely formal way, as follows. For initial state xOEZz and

= admissible system of, write J = J(T,x500 in (2.2). Let
(3.1) N(T,xo) = th J(T,xo,q).

Formal reasoning indicates that W(T,x) should satisfy the dynamic .

programming equation
(3.2) M-, 150,

?y» with tnitial data W(0,x) = G(x), where

B e
Sy A N
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(3.3) Ag(x) = min{LY%(x) + k(x,u)].
uel

Formally, an optimal Markov policy gf is found by requiring gf(t,x)
to minimize LYW(T - t,x) + k(x,u) among all u€U. Instead of the

finite time control problem, control until x, exits a given open set

t
@ci can be considered. In that case the dynamic programming equation
becomes the autonomous form of (3.2) in &, with W(x) = G(x) for x€ 3&.
There are also autonomous dynamic programming equations associated with
the infinite time control problem, with discounted cost or average cost
per unit time criteria to be minimized.

In the rigorous mathematical treatment of dynamic programming there
is one easy result, the so-called Verification Theorem [7, p. 159].
Roughly speaking, it states that if W(T,x) satisfying (3.2) with the
initial data and the associated Markov policy gf are both “"sufficiently
regular", then gf is indeed optimal and W(T,x) 1is the minimum per-
formance in (3.1). The Verification Theorem is used to obtain explicit
solutions, in those cases where such a solution is known. Much more
difficult are the questions of existence of sufficiently regular W and
gf, and there is a large literature dealing with various aspects of them.
One apprdach is analytical with the stochastic interpretation made after-
ward. In this approach, existence of solutions to the dynamic programming
equation and their regularity properties are studied, using non-probabil-
istic methods. It is then proved that optimal (or at least c-optimal)

Markov control policies exist. A second approach is probabilistic. In

this approach, one starts with the minimum cost function W in (3.1)
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and develops stochastic counterparts to the dynamic programming conditions
for a minimum. A third approach is to consider an associated nonlinear
semiaroup (§4). While this approach leads to fewer technical diffisulties
than either of the other two, it also leads to weaker results.

For controlled diffusions the analytical approach is remarkably well
developed. See Krylov [8], Lions [45]. In the nondegenerate case the
&&namic programming equation is a second order nonlinear partial differ-
ential equation of parabolic type also called a Hamilton-Jacobi-Bellman
equation. In various other formulations, with Xy controlled for all
time t>0 or until exit from an open set #, the Hamilton-Jacobi-
Bellman equation is elliptic rather than parabolic. Under reasonable
assumptions the problem, the solution S has generalized second deriva-
tives which are locally bounded. In the elliptic case a deeper regular-
ity result of Evans [26][60] gives a classical solution. In the degen-
erate case W 1is less regular with locally bounded generalized first

derivatives W, . The dynamic programming equation (3.2), suitably

i
interpreted in terms of Schwartz distributions, still holds [8)[45].

For the case of controlled jump Markov processes, results on existence,
uniqueness and regularity of solutions to (3.2) were obtained by
Pragarauskas [52].

A large class of nonlinear elliptic or parabolic equations, satis-
fying approprate convexity conditions, can be represented as Hamilton-

Jacobi-Bellman equations. As Gaveau [35] pointed out, the Monge-Ampere

equation has such a representation.
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In the probabilistic approach, the starting point is to rewrite
the dynamic programming principle in the following martingale form.

Given an admissible system & l'et
t
m, = I_ok(xs.us)ds + W(T - t.xt).

Then m

if m

is a (g,P) submartingale, and 6 is optimal if and only
is a (#%,P) martingale. With the aid of the Doob-Meyer decom-

t

t
position for submartingales and some martingale representation theorems,-

conditions for optimality are obtained. See Bismut [21), Davis [16],
Ellfott [25], E1 Karouf [5]. These conditions are probabilistic coun-
terparts of those expressed analytically by the dynamic programming
equation (3.2). With the probabilistic approach difficult questions
of regularity of solutions to (3.2) are avoided. The probabilistic
techniques give results about existence of optimal Markov policies [21],
[5,p. 218]. These methods also give conditions for a minimum for
optimal control under partial observations.

A different kind of Markovian control problem for diffusions, in
which the control acts only on the boundary of a region&c R" was
considered by Vermes [61].

4. The Nisio nonlinear semigroup. The dynamic programming prin-

ciple can be restated in another form, in terms of a semigroup of non-
linear operators. In purely formal way, this is done as follows. 1In
(2.2) we fix k but consider various G. We rewrite the fnfimum in
(3.1) as W(T,x) = STG(x). The dynamic programming principle is
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formally equivalent to the semigroup property
- . \ .

(4.1) S =S, 08

of the family {ST} of nonlinear operators. In addition, for

"sufficiently regular” G, one should have

(4.2) 5.6l = 6.

This formal procedure was put on a rigorous basis by Nisio [10], who
obtained {ST} as a semigroup on the space C(z) and showed under some
mild additional conditions that (4.2) holds for GeD (notation of §2).
Equations (4.1).(4.2) would imply the dynamic programming equation (3.2)
if we knew that W(T,-) = $;6 s sufficiently regular (in particular,
if Sy maps D into D.) However, W does not generally have the
desired regularity. In such instances (4.2) is a kind of weaker sub-
stitute for (3.2).

Nisio's treatment is analytical.’ She obtains ST as the lower
envelope of the family of linear semigroups S%. where for constant
control u€U the generator of S% coincides on D with the operator
A k(-,u). A stochastic treatment of the Nisfo semigroup is given in
Bensoussan-Lions [2], and a uniqueness result in case of nondegeneéate
diffusions in Nisio ([51]. E1 Karoui, Lepeltier, and Marchal {24] used
another procedure, and obtained a nonlinear semigroup on a larger space

of bounded functions G which are measurable in a suitable sense.
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5. Explicit and approximate solutions. In a few instances the
dynamic programming equation (3.2) can be solved explicitly. Examples

are the well known stochastic Tinear regulator and Merton's optimal
portfolio selection problem [7, pp. 160,165]. For other special prob-
lems the solution can be reduced tova free boundary problem. The
boundaries to be determined separate regions where some control con-
straint holds 6r not. See for example Karatzas-Benes [40].

- VNhen a solution cannot be found by special methods, one can seek
an approximate solution to (3.2). One class of approximate methods

involve discretizations of (3.2). Among such methods the algorithm of

Kushner [9] has a natural stochastic control interpretation. The
difference equations associated with the algorithm correspond to the
dynamic programming equation for an approximating controlled Markov
chain. For the special case of controlled one-dimensional diffusions,
Borkar and Variaya [22] used a procedure in which piece-wise-constant
approximating Markov control policies are allowed.

Other results give approximate solutions to (3.2) when the state
process x. is a nearly-deterministic controlled diffusion. In (2.3)
let o = ¢%. The solution is sought in the form of an asymptotic
series in e. In (27] this is done by expanding the solution WE(T,x)

. in an asymptotic series. The expansion is valid in regions where the
solution HO(T.x) of thg corresponding Hamilton-Jacobi equation is

smooth. In [20] Bensoussan obtains an asymptotic expansion, using &
stochastic maximum principle instead of (3.2).
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6. A logaritmic transformation. Consider a linear operator of
the form L + V(x), where L 1is the generator of a Markov process €
with state space I. The initial value problem

(6.1) g*'- Le + V(x)e¢

with data ¢(0,x) = o(x) has a probabilistic solution by a well known
formula of Feynman-Kac type. For positive solutions of (6.1) another
probabilistic representation for ¢(T,x) can often be found in the
following way. The logarithmic transformatifon I = -log¢ changes (1.1)

into the nonlinear equation

(6.2) | dl < w(1) - v(x),
(6.3) (1) = -efL(e]).

If one can find a control problem of the kind in §2 such that
(6.4) H(I) = minfL"T + k(x,u)1,
uey

then (6.2) is the dynamic programming equation (3.2). The stochastic
control interpretation of I(T,x) is as the minimum of the criterion

J in (2.2). Thus, in (3.1) we have W .= I. For a nondegenerate diffu-
sfon obeying the stochastic differential equation

(6.5) dg, = blg,)dt + o(g, )dw,,

a Markov control policy u(t.x) changes the generator L to L4,
corresponding to change of drift from b(x) to u(t,x) in (6.5).




In (2.2) one takes

k(x,u) = 3{b(x) - u)'a” (x)(blx) - u),

with a = cc'. An appropriate control problem for the case of €, 2
jump Markov process is described in [31], and for a general class of
Markov & in Sheu's thesis [58]. The change of generator from L
to LY corresponds to a change of probability measure. It was pointed
out by M. Day that this change of measure results by conditioning with
respect to #(x;). See [31,(4.5)].

Incase L = %A. corresponding to £,  a brownfan motion (6.1) 1s

the heat equation with a poiential term. The stochastic control inter-
pretation of S = -log ¢ is as least uverage action. Upon rescaling,
taking L = %ﬁ and replacing V by A']V. the usual least action fis
obtained as a “classical mechanical 1imit" as A + 0 [29]. The heat
equation with potential is the "imaginary time" analogue of the
Schridinger equation of quantum mechanics. There is an intriguing
connection between stochastic control and the Schrodinger equation,

whose implications are not as yet well understood [36]. This work {is
in the framework of Nelson's stochastic mechanics. An apparently
different theory of "stochastic mechanics" was developed by Bismut [4].
Holland [39) gave a stochastic control interpretation of the domi-
nant eigenvalue of the Schrodinger equation as minimum msen total energy
of a particle in equilibrium. The approach was again based om 2 loga-
rithmic transformation and subsequently led to Sheu's treatment {58]




-14-

of the Donsker-Varadhan formula for the dominant eigenvalue of the
operator L + V appearing in (6.1).
The Ventsel.- Freidlin theory of large deviations deals with asymp-
totic probabilities of rare events associated with nearly deterministic
Markov processes. The logarithmic transform gives another approach to
results of this kihd. As an illustration we consider the probiem of
exit from an open set Dc: during the time interval 0 <t < T. Let
2 as ]
e+0. Let I°=-c log P,(:° < T), where 1% is the exit time of

xi be a Markov process tending to a deterministic limit x

xi from D. Under various assumptions (including a suitable scaling
of ), I° tends to a limit I°, where I(T,x) 1is the minimm of a
certain "action functional" among curves starting at x€D and leaving
D by time T. In the stochastic control approach I€(T,x) {is the
minimum performance in a corresponding stochastic control problem [28)
[31](58). 1In this approach a minimum principle is associated with the
large deviation problem for ¢ > 0, not just in the limit as e - O.
In [32), thé logarithmic transformation was applied to solutions to
the pathwise equation of nonlinear filtering, making a connection
between filtering and stochastic control. .

7. Partial observations; adaptive control. The states Xy of
a stochastic system often cannot in practice be measured dirvectly, or

perhaps can only be measured with random errors. This has led to an
extensive 1iterature or nonlinear filtering and on optimal control under
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partial observations. For. contro]led gjfﬂum, ; smm,mdﬂ is

to take state dynamics (2.3) and an obmtm process. .y, .governed . .-
by '

(rvvy ' yt . IO h(x )ds + “t'

with W a bmmim mtlon indgpendeat of w. The infomtimgwal-
able to the controller at time ¢ is usyally assumed to.be gescribed
by the o-algebra & generated by observations y; for s < t.

However, existence of optimal controls has been proved oaly with a

somewhat wider dass of éd,nis;sihle controls than those adapted
to this famﬂy (9.1

Several good survey articles on mtrollad partially observed
diffusions have recently appeared (151{16]1L17]. Hence, we shall not
try to smrize the various results here. In studying partially
observed control problems it is useful to introduce an auxiliary
"separated" control problem. In the separated problem the role of
“state” process is taken by a measure-valued stochastic process L
[34]. The measure o, represents an unnorwalized conditional distri-

Mhutien of Xy givcn observations and controls y g0 cs <t A
_mﬂmr semigroup fqr the controlled, measure-valued process o, hes
been constructed. [19]&30;&33]  Among other racent work, we weation that

of llmnl (53] on partially observed jump processes, and of Mexsiogto-

. Saptrglas (49) on tapulsiye contes] under partial infommtien. |

e s ot } s @ g
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Mdaptive control. In adaptive control the objective is the simul-

taneous control and identification of unknown system parameters. Common
techniques in discrete-time adaptive control involve sequential techni-
ques, based on maximum 1ikelihood or least squares, for updating esti-
mates of unknown parameters. In the context of adaptive control of
Markov chains see the pioneering work of Mandl (48], also Borkar-
Varaiya [23], Kumar-Lin [41). Another (Bayesian) viewpoint is to treat
adaptive control of Markov processes as a special case of stochastic
contro) under partial observatifons. This is done by simply regarding .
the unknown piucameters as additional (nontime-vanying)'components of

the system state. From a practical standpoint this approach encounters
well known difficulties, in that effective solutions to partially'
observed stochastic prob]ems are difficult to obtain. Nevertheless,

special cases in which the problem becomes finite dimensional have
been treated by Hijab [38] and Rishel [54].

8. Impulse control;problems with switching costs. In impulse
control problems the control actions are taken at discrete (random) ﬁ

time instance, and each control action leads to an instantaneous change ,
in the state Xy - Typical impulse control problems are those of stock
inventory management, in which a control action is to reorder with
immedfate delivery of the order. .

The analytic treatment of impulseé control was initfatsd and developed
systematically by Bensoussan and Lions [3), with emphasis on the controlh
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of nondegenerate diffusions. The dynamic programming equatfon is re-
placed by a set of inequalities which take the form of a quasivariational
inequality. For the case of degenerate diffusions see Menaldi [50], and
for impulsive control for Markov Feller process see Robin [55)[56].
Lepeltier-Marchal [43) gave a probabilistic treatment.

Another class of stochastic control problems of recent interest are
those in which control actions are taken at discrete time instants, with
no instantaneous change n Xy but with a cost of switching control
actions. Such problems afise in the theory of controlled queues (see
Sheng [57] ) and in control of energy generating systems under uncertain_
demand. The analytical treatment again is to‘reduce the problem to a
quasivariational inequality. See Lenhart-Belbas [42], Liao [44).

9. Applications. Optimal stochastic control theory was initially
motivated by problems of control of physical devices. More recent
influences have come from management science, economics, and information
systems. Until now, the impact on engineering practice of much of the
sophisticated mathematical theory has been small. The stochastic linear
regulator is a standard tool, because the optimal Markov control poli-
cies turn out to be iinear in the state x. 1f the Markov policy is'

nonlinear, it is difficult to implement. Moreover, other issues may be
considered in practice more important than optinnlit& of system perform-
ance as predicted by the stochastic control model. The model is gener-

ally a simplification of nature, through linearizations, reductions of
dimensfonality, assumptions that noises are white, etc. A control

R T
: "45'?‘!(’,;

TR et . Dbt Bt 1 o0 VS it 5D




-18-

which performs well (even optimally) according to the model may behave
poorly in a real control system. The question of robustness of controls
with respect to unmodelled system dynamics is of current interest in the
engineering control literature. See for example [63]). A different sort
of question is that of stochastic controllability [64].

We conclude by mentioning two novel applications of stochastic con-
trol. One is Arrow's model of exploration consumption, and pricfng of
a randomly distributed natural resource. This model was analyzed in
detail by Hagan-Caflisch-Keller [37]. They determined approximately
the free boundary between portions of the state space where new explor-
ation should or should not be undertaken.

Ludwig and associates have applied a stochastic control method to
fishery management problems [47]. The fishery resource is controlled |
through the rate at which fish are harvested. This work has an impor-
tant statistical aspect as well as the control aspect, since errors in

measuring unknown parameters in the fishery model can be important.
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